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1 Thomas Graf, “Cilium: Network and Application Security with BPF and XDP”
(DockerCon 17, April 17–20).

CHAPTER 1

Introduction

In the last couple of years, eBPF has gone from relative obscurity to
one of the hottest technology areas in modern infrastructure com‐
puting. Personally, I’ve been excited about the possibilities that eBPF
enables ever since seeing Thomas Graf speak about it in a Black Belt
session at DockerCon 17.1 At the Cloud Native Computing Founda‐
tion (CNCF), my colleagues on the Technical Oversight Committee
put eBPF forward as one of the areas to watch in our predictions
of the technologies that would take off in 2021. Over 2,500 signed
up for that year’s eBPF Summit virtual conference, and several of
the world’s most advanced software engineering companies came
together to create the eBPF Foundation. Clearly, there is a lot of
interest in this technology.

In this short report, I hope to give you some insight into why
people are so excited about eBPF and the capabilities it offers for
tooling in modern compute environments. You’ll get a mental model
for what eBPF is and why it’s so powerful. There are some code
examples to help make it more concrete (but you can skip over
these if you prefer). You’ll get an understanding of what’s involved
when building eBPF-enabled tools, and why eBPF has become so
seemingly ubiquitous in such a short period of time.
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2 Steven McCanne and Van Jacobson, “The BSD Packet Filter: A New Architecture for
User-Level Packet Capture” (working paper, Lawrence Berkeley National Laboratory,
Berkeley, December 19, 1992).

Inevitably, in this short report there isn’t room to go into all the
details, but I’ll leave you with some pointers for more information if
you want to dive in more deeply.

Extended Berkeley Packet Filter
Let’s get the acronym out of the way: eBPF stands for Extended
Berkeley Packet Filter. From that name, you can see that its roots
lay in filtering network packets, and the original paper2 was written
at the Berkeley Lab (Lawrence Berkeley National Laboratory). But
(in my opinion) the name is not terribly helpful for conveying the
true power of eBPF, as the “extended” versions enable so much more
than packet filtering. These days, eBPF is used as a standalone name
that encompasses more than its acronym suggests.

So, if it’s not just about packet filtering, what is eBPF? eBPF is
a framework that allows users to load and run custom programs
within the kernel of the operating system. That means it can extend
or even modify the way the kernel behaves.

As an eBPF program is loaded into the kernel, a verifier ensures
that it is safe to run, and rejects it if not. Once loaded, an eBPF
program needs to be attached to an event, so that whenever the
event happens, the program is triggered.

eBPF was originally developed for Linux, and that is the operating
system I’ll focus on in this report; but it is notable that, as of
this writing, Microsoft is developing an eBPF implementation for
Windows.

Now that the Linux kernels in widespread use all have support
for the “extended” parts, the terms eBPF and BPF are largely used
interchangeably these days.

eBPF-Based Tools
As you’ll see in this report, the ability to dynamically change the
behavior of the kernel is tremendously useful. Traditionally, if we
want to observe how our applications are behaving, we add code
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3 perf is a Linux subsystem for collecting performance data.

into those apps to generate logs and traces. eBPF allows us to collect
customized information about how an app is behaving without hav‐
ing to change the app in any way, by observing it from within the
kernel. We can build on this observability to create eBPF security
tools that detect or even prevent malicious activity from within the
kernel. And we can create powerful, high-performance networking
capabilities with eBPF, handling network packets within the kernel
and avoiding costly transitions to and from user space.

The concept of observing applications from the kernel’s perspective
isn’t entirely new—it builds on older Linux features, such as perf,3

which also collects behavior and performance information from
within the kernel without having to modify the applications being
measured. But these tools define a scope for the kinds of data that
can be collected, and the formats in which the data is made avail‐
able. With eBPF, we have far more flexibility because we can write
entirely custom programs, allowing us to build a wide range of tools
for different purposes.

eBPF programming is incredibly powerful, but it’s also complex.
For most of us, the utility of eBPF is going to come not from
writing programs ourselves but from using tools created by others.
There are an increasing number of projects and vendors building on
the eBPF platform to create a new generation of tooling, covering
observability, security, networking, and more.

I’ll discuss some more of these higher-level tools later in this report,
but if you’re comfortable on the Linux command line and can’t wait
to see eBPF in action, a great place to start is the BCC project.
It includes a huge collection of tracing tools; even just glancing at
the list should give you some idea of the vast scope of operations
we can instrument with eBPF, including file operations, memory
usage, CPU stats, and even observing any bash command entered
anywhere in the system.

In the next chapter, we’ll look at why changing the kernel’s behavior
is useful, and why eBPF makes it vastly easier to do this than writing
kernel code directly.

eBPF-Based Tools | 3
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CHAPTER 2

Changing the Kernel Is Hard

Since eBPF allows running custom code in the Linux kernel, let’s
make sure you’re up to speed on what the kernel does. Then we can
cover why eBPF changes the game when it comes to modifying how
the kernel behaves.

The Linux Kernel
The Linux kernel is the software layer between your applications
and the hardware they’re running on. Applications run in an unpri‐
vileged layer called user space, which can’t access hardware directly.
Instead, an application makes requests using the system call (syscall)
interface to request the kernel to act on its behalf. That hardware
access can involve reading and writing to files, sending or receiving
network traffic, or even just accessing memory. The kernel is also
responsible for coordinating concurrent processes, enabling many
applications to run at once.

As application developers, we typically don’t use the system call
interface directly, because programming languages give us high-level
abstractions and standard libraries that are easier interfaces to pro‐
gram. As a result, a lot of people are blissfully unaware of how much
the kernel is doing while our programs run. If you want to get a
sense of how often the kernel is invoked, you can use the strace
utility to show all the system calls an application makes. Here’s an
example, where using cat to read the word hello from a file and
write it to the screen involves over 100 system calls:

5



1 “Linux 5.12 Coming in at Around 28.8 Million Lines,…” Phoronix (March 2021).

liz@liz-ebpf-demo-1:~$ strace -c cat liz.txt
hello
% time     seconds  usecs/call     calls    errors syscall
------ ----------- ----------- --------- --------- -------------
  0.00    0.000000           0         5           read
  0.00    0.000000           0         1           write
  0.00    0.000000           0        21           close
  0.00    0.000000           0        20           fstat
  0.00    0.000000           0        23           mmap
  0.00    0.000000           0         4           mprotect
  0.00    0.000000           0         2           munmap
  0.00    0.000000           0         3           brk
  0.00    0.000000           0         4           pread64
  0.00    0.000000           0         1         1 access
  0.00    0.000000           0         1           execve
  0.00    0.000000           0         2         1 arch_prctl
  0.00    0.000000           0         1           fadvise64
  0.00    0.000000           0        19           openat
------ ----------- ----------- --------- --------- -------------
100.00    0.000000                   107         2 total

Because applications rely so heavily on the kernel, it means that we
can learn a lot about how an application behaves if we can observe
its interactions with the kernel. For example, if you are able to inter‐
cept the system call for opening files, you can see exactly which files
any application accesses. But how could you do that interception?
Let’s consider what would be involved if we wanted to modify the
kernel, adding new code to create some kind of output whenever
that system call is invoked.

Adding New Function to the Kernel
The Linux kernel is complex, with around 30 million lines of code1

at time of writing. Making a change to any codebase requires some
familiarity with the existing code, so unless you’re a kernel developer
already, this is likely to present a challenge.

But you’ll be facing a challenge that isn’t purely technical. Linux is
a general purpose operating system, used in different environments
and circumstances. This means that if you want to make a change to
the kernel, it’s not simply a matter of writing code that works. It has
to be accepted by the community (and more specifically by Linus
Torvalds, creator and main developer of Linux) that your change

6 | Chapter 2: Changing the Kernel Is Hard
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2 Yujuan Jiang et al., “Will My Patch Make It? And How Fast?,” (paper, 2013). According
to this research paper, 33% of patches are accepted, and most take 3–6 months.

3 Thankfully, security patches to existing functionality get made available more quickly.

will be for the greater good of all. This isn’t a given—only one-third
of submitted kernel patches are accepted.2

Let’s suppose that you’ve figured out a good technical approach for
intercepting the system call for opening files. After some months
of discussion and some hard development work on your part, let’s
imagine that the change is accepted into the kernel. Great! But how
long will it be until it arrives on everyone’s machines?

There’s a new release of the Linux kernel every two or three months,
but even when a change has made it into one of these releases, it’s
still some time away from being available in most people’s produc‐
tion environments. This is because most of us don’t just use the
Linux kernel directly—we use Linux distributions like Debian, Red
Hat, Alpine, Ubuntu, etc., that package up a version of the Linux
kernel with various other components. You may find that your
favorite distribution is using a kernel release that’s several years old.

For example, a lot of enterprise users employ Red Hat® Enterprise
Linux® (RHEL). At the time of writing, the current release is RHEL
8.5, dated November 2021. This uses a kernel based on version 4.18.
This kernel was released in August 2018.

As illustrated in the cartoon in Figure 2-1, it takes literally years to
get new functionality from the idea stage into a production environ‐
ment Linux kernel.3

Adding New Function to the Kernel | 7
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Figure 2-1. Adding features to the kernel (cartoon by Vadim
Shchekoldin, Isovalent)

Kernel Modules
If you don’t want to wait for years for your change to make it into
the kernel, there is another option. The Linux kernel was designed
to accept kernel modules, which can be loaded and unloaded on
demand. If you want to change or extend kernel behavior, writing
a module is certainly one way to do it. In our example of instru‐
menting the system call for opening files, you could write a kernel
module to do this.

The biggest challenge here is that this is still full-on kernel program‐
ming. Users have historically been very cautious about using kernel
modules for one simple reason: if kernel code crashes, it takes down
the machine and everything running on it. How can a user be
confident that a kernel module is safe to run?

Being “safe to run” doesn’t just mean not crashing—the user wants
to know that a kernel module is safe from a security perspective.
Does it include vulnerabilities that an attacker could exploit? Do
we trust the authors of the module not to put malicious code in it?
Because the kernel is privileged code, it has access to everything on
the machine, including all the data, so malicious code in the kernel
would be a serious cause for concern. This applies to kernel modules
too.

8 | Chapter 2: Changing the Kernel Is Hard



The safety of the kernel is one important reason why Linux distri‐
butions take so long to incorporate new releases. If other people
have been running a kernel version in a variety of circumstances
for months or years, this should have flushed out issues. The distri‐
bution maintainers can have some confidence that the kernel they
ship to their users/customers is hardened—that is, safe to run.

eBPF offers a very different approach to safety: the eBPF verifier,
which ensures that an eBPF program is only loaded if it’s safe to run.

eBPF Verification and Security
Since eBPF allows us to run arbitrary code in the kernel, there needs
to be a mechanism to make sure it’s safe to run, won’t crash users’
machines, and won’t compromise their data. This mechanism is the
eBPF verifier.

The verifier analyzes an eBPF program to ensure that regardless of
input, it will always terminate safely and within a bounded number
of instructions. For example, if a program dereferences a pointer, the
verifier requires that the program checks the pointer first to make
sure that it is not null. Dereferencing a pointer means “looking
up the value at this address” and the null or zero value is not a
valid address to look at. If you dereference a null pointer in an
application, that app crashes; whereas, dereferencing a null pointer
in the kernel crashes the whole machine, so it’s crucial to avoid it.

Verification also makes sure that eBPF programs can only access
memory they are supposed to access. For example, imagine an eBPF
program that’s triggered in the networking stack, and passed the
kernel’s socket buffer that includes the data being transferred. There
are special helper functions such as bpf_skb_load_bytes() that this
eBPF program can call to read bytes of data from the socket buffer.
Another eBPF program triggered by, say, a system call, where there’s
no socket buffer available, will not be permitted to use this helper
function. The verifier also ensures that the program only reads bytes
of data within that socket buffer—it’s not allowed to access arbitrary
memory. The intention here is to make sure that eBPF programs are
safe from a security perspective.

Of course, it would still be possible to write a malicious eBPF pro‐
gram. If you can observe data for legitimate reasons, you can also
observe it for illegitimate ones. Be careful to load only trusted eBPF
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programs from verifiable sources, and only grant permissions to
manage eBPF tools to people that you would trust with root access.

Dynamic Loading of eBPF Programs
eBPF programs can be loaded into and removed from the kernel
dynamically. Once they are attached to an event, they’ll be triggered
by that event regardless of what caused that event to occur. For
example, if you attach a program to the syscall for opening files, it
will be triggered whenever any process tries to open a file. It doesn’t
matter whether that process was already running when the program
was loaded.

This leads to one of the great strengths of observability or security
tooling that uses eBPF—it instantly gets visibility over everything
that’s happening on the machine.

Additionally, as illustrated in Figure 2-2, people can create new
kernel functionality very quickly through eBPF without requiring
every other Linux user to accept the same changes.

Figure 2-2. Adding kernel features with eBPF (cartoon by Vadim
Shchekoldin, Isovalent)
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Now that you’ve seen how eBPF allows dynamic, custom changes to
the kernel, let’s examine what’s involved if you want to write an eBPF
program.

Dynamic Loading of eBPF Programs | 11





1 See the BPF instruction set documentation.

CHAPTER 3

eBPF Programs

In this chapter, let’s turn to what’s involved in writing eBPF code. We
need to consider the eBPF program itself, that runs in the kernel,
and also the user space code that will interact with it.

Kernel and User Space Code
First of all, what programming languages can you use to write eBPF
programs?

The kernel accepts eBPF programs in bytecode form.1 It’s possible to
write this bytecode by hand, in much the same way that it’s possible
to write application code in assembly language—but it’s generally
more practical for humans to use a higher-level language that can be
compiled (that is, translated automatically) into bytecode.

eBPF programs can’t be written in arbitrary high-level languages
for a couple of reasons. First, the language compiler needs to have
support for emitting the eBPF bytecode format that the kernel
expects. Second, many compiled languages have runtime features—
for example, Go’s memory management and garbage collection—
that make them unsuitable. At time of writing the only options
for writing eBPF programs are C (compiled with clang/llvm) and,
more recently, Rust. The vast majority of eBPF code published to
date is in C, and this makes sense given that it’s the language of the
Linux kernel.

13
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2 It’s also possible to skip the object file and load bytecode directly into the kernel using
the bpf() system call.

At a minimum, something in user space needs to load the program
into the kernel and attach it to the right event. There are utilities
such as bpftool to help with this, but these are low-level tools
that assume detailed knowledge of eBPF and are designed more for
eBPF specialists than for the average user. In most eBPF-based tools,
there is a user space application that takes care of loading the eBPF
program into the kernel, passes in any configuration parameters,
and displays information collected by the eBPF program in a user-
friendly way.

The user space part of an eBPF tool can, at least in theory, be written
in any language, though in practice there are libraries to support this
in a fairly small set of languages: C, Go, Rust, and Python among
them. This language choice is further complicated because not all
languages have libraries that support libbpf, which has become a
popular option for making eBPF programs portable across different
versions of the kernel. (We’ll discuss libbpf in Chapter 4.)

Custom Programs Attached to Events
The eBPF program itself is typically written in C or Rust and com‐
piled into an object file.2 This is a standard ELF (Executable and
Linkable Format) file that can be inspected with tools like readelf,
and it contains both the program bytecode and the definition of any
maps (which we’ll discuss shortly). As shown in Figure 3-1, user
space program reads this file and loads it into the kernel, if allowed
by the verifier that you met in the previous chapter.

Figure 3-1. A user space application uses the bpf() system call to load
eBPF programs from an ELF file into the kernel

14 | Chapter 3: eBPF Programs



3 fentry/fexit is described in an article by Alexei Starovoitov: “Introduce BPF Trampo‐
line” (LWN.net, November 14, 2019).

4 Oracle Linux Blog, “Taming Tracepoints in the Linux Kernel,” by Matt Keenan, posted
March 9, 2020.

5 Brendan Gregg’s site is a good source of information about perf events.

Once you have an eBPF program loaded into the kernel, it has to
be attached to an event. Whenever the event happens, the associated
eBPF program(s) are run. There’s a very wide range of events that
you can attach programs to; I won’t cover them all, but the following
are some of the more commonly used options.

Entry to/Exit from Functions
You can attach an eBPF program to be triggered whenever a kernel
function is entered or exited. Many of today’s eBPF examples use the
mechanism of kprobes (attached to a kernel function entry point)
and kretprobes (function exit). In more recent kernel versions, there
is a more efficient alternative called fentry/fexit.3

Note that you can’t guarantee that all functions defined in one kernel
version will necessarily be available in future versions unless they
are part of a stable API such as the syscall interface.

You can also attach eBPF programs to user space functions with
uprobes and uretprobes.

Tracepoints
You can also attach eBPF programs to tracepoints4 defined within
the kernel. Find the events on your machine by looking under /sys/
kernel/debug/tracing/events.

Perf Events
Perf5 is a subsystem for collecting performance data. You can hook
eBPF programs to all the places where perf data is collected, which
can be determined by running perf list on your machine.

Linux Security Module Interface
The LSM interface allows for security policies to be checked before
the kernel allows certain operations. You may have come across
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6 If you’re interested in seeing a concrete example of this, you might like to watch my talk
at eBPF Summit 2021 where I implement a very basic load balancer in a few minutes, as
an illustration of how we can use eBPF to change the way the kernel handles network
packets.

AppArmor or SELinux that make use of this interface. With eBPF,
you can attach custom programs to the same checkpoints, allowing
for flexible, dynamic security policies and some new approaches to
runtime security tooling.

Network Interfaces—eXpress Data Path
eXpress Data Path (XDP) allows attaching an eBPF program to
a network interface, so that it is triggered whenever a packet is
received. It can inspect or even modify the packet, and the program’s
exit code can tell the kernel what to do with that packet: pass it on,
drop it, or redirect it. This can form the basis of some very efficient
networking functionality.6

Sockets and Other Networking Hooks
You can attach eBPF programs to run when applications open or
perform other operations on a network socket, as well as when
messages are sent or received. There are also hooks called traffic
control or tc within the kernel’s network stack where eBPF programs
can run after initial packet processing.

Some features can be implemented with an eBPF program alone, but
in many cases we want the eBPF code to receive information from,
or pass data to, a user space application. The mechanism that allows
data to pass between eBPF programs and user space, or between
different eBPF programs, is called maps.

eBPF Maps
The development of maps is one of the significant differences that
justify the e for extended, in the eBPF acronym.

Maps are data structures that are defined alongside eBPF programs.
There are a variety of different types of maps, but they are all
essentially key–value stores. eBPF programs can read and write to
them, as can user space code. Common uses for maps include:

16 | Chapter 3: eBPF Programs
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• An eBPF program writing metrics and other data about an•
event, for user space code to later retrieve

• User space code writing configuration information, for an eBPF•
program to read and behave accordingly

• An eBPF program writing data into a map, for later retrieval by•
another eBPF program, allowing the coordination of informa‐
tion across multiple kernel events

If both the kernel and user space code will access the same map,
they will need a common understanding of the data structures
stored in that map. This can be done by including header files that
define those data structures in both the user space and kernel code,
but if these aren’t written in the same language, the author(s) will
need to carefully create structure definitions that are byte-for-byte
compatible.

We’ve discussed the main constituents of an eBPF tool: eBPF pro‐
grams that run in the kernel, user space code to load and interact
with those programs, and maps that allow programs to share data.
To make things concrete, let’s look at an example.

Opensnoop Example
For this example of an eBPF program, I’ve chosen opensnoop, a
utility that shows you what files any process opens. The original
version of this utility was one of many BPF tools that Brendan
Gregg originally wrote in the BCC project which you can find on
GitHub. It was later rewritten for libbpf (which you’ll meet in
the next chapter), and in this example I’m using the newer version
under the libbpf-tools directory.

When you run opensnoop, the output you’ll see depends a lot on
what’s happening on the virtual machine at the time, but it should
look something like this:

PID    COMM         FD ERR PATH
93965  cat           3   0 /etc/ld.so.cache
93965  cat           3   0 /lib/x86_64-linux-gnu/libc.so.6
93965  cat           3   0 /usr/lib/locale/locale-archive
93965  cat           3   0 /usr/share/locale/locale.alias
...

Each line of output indicates that a process opened (or attempted to
open) a file. The columns show the process ID, the command being

Opensnoop Example | 17
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7 At the time of writing, this code uses a perf buffer for the events map. If you were
writing this code today for recent kernels, you would get better performance from a
ring buffer, which is a newer alternative.

run, the file descriptor, an indication of any error code, and the path
of the file being opened.

Opensnoop works by attaching eBPF programs to the open() and
openat() system calls that any application has to make to ask the
kernel to open a file. Let’s dig in to see how this is implemented.
For brevity, we won’t look at every line of the code, but I hope it’s
sufficient to give you an idea of how it works. (Feel free to skip to
the next chapter if you’re not interested in diving this deep!)

Opensnoop eBPF Code
The eBPF code is written in C, in the file opensnoop.bpf.c. Near
the beginning of this file you can see the definitions of two eBPF
maps—start and events:

struct {
    __uint(type, BPF_MAP_TYPE_HASH);
    __uint(max_entries, 10240);
    __type(key, u32);
    __type(value, struct args_t);
} start SEC(".maps");
struct {
    __uint(type, BPF_MAP_TYPE_PERF_EVENT_ARRAY);
    __uint(key_size, sizeof(u32));
    __uint(value_size, sizeof(u32));
} events SEC(".maps");

When the ELF object file is created, it contains a section for each
map and each program to be loaded into the kernel, and the SEC()
macro defines these sections.

As you’ll see when we look into the program, the start map is used
to temporarily store the arguments to the syscall—including the
name of the file being opened—while the syscall is being processed.
The events map7 is used for passing event information from the
eBPF code in the kernel to the user space executable. This is illustra‐
ted in Figure 3-2.
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8 In some kernels you’ll also find openat2(), but this isn’t handled in this version of
opensnoop, at least at time of writing.

Figure 3-2. Calling open() triggers eBPF programs that store data in
opensnoop’s eBPF maps

Later in the opensnoop.bpf.c file, you’ll find two extremely similar
functions:

SEC("tracepoint/syscalls/sys_enter_open")
int tracepoint__syscalls__sys_enter_open(struct 
    trace_event_raw_sys_enter* ctx)

and

SEC("tracepoint/syscalls/sys_enter_openat")
int tracepoint__syscalls__sys_enter_openat(struct 
    trace_event_raw_sys_enter* ctx)

There are two different system calls for opening files:8 openat()
and open(). They are identical except that openat() has an extra
argument for a directory file descriptor, and the path name for the
file to be opened is taken relative to that directory. Likewise, the
two functions in opensnoop are identical except for handling this
difference in the arguments.

As you can see, they both take a parameter that is a pointer
to a structure called trace_event_raw_sys_enter. You’d find the
definition for this structure in the vmlinux header file generated
for the particular kernel you’re running on. The art of writing
eBPF programs includes working out what structure each program
receives as its context, and how to access the information within it.
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These two functions use a BPF helper function to retrieve the ID of
the process that’s calling this syscall:

u64 id = bpf_get_current_pid_tgid();

The code gets the filename and any flags that were passed to the
syscall, and puts them in a structure called args:

args.fname = (const char *)ctx->args[0];
         args.flags = (int)ctx->args[1];

This structure is written into the start map using the current pro‐
cess ID as the key:

bpf_map_update_elem(&start, &pid, &args, 0);

And that’s all that the eBPF programs do on entry to the syscall. But
there’s another pair of eBPF programs defined in opensnoop.bpf.c
that get triggered when the syscalls exit:

SEC("tracepoint/syscalls/sys_exit_open")
int tracepoint__syscalls__sys_exit_open

This program and its openat() twin share common code in the
function trace_exit(). Have you noticed that all the functions
called by eBPF programs are prefixed by static __always_inline?
That forces the compiler to put the instructions for these functions
inline, because in older kernels a BPF program is not allowed to
jump to a separate function. Newer kernels and versions of LLVM
can support noninlined function calls, but this is a safe way to
ensure the BPF verifier stays happy. (Nowadays there is also the
concept of a BPF tail call, where execution jumps from one BPF
program to another. You can read more about BPF function calls
and tail calls in the eBPF documentation.)

The trace_exit() function creates an empty event structure:

struct event event = {};

This will get populated with information about the open/openat
syscall that’s coming to a conclusion and sent to user space via the
events map.

There should be an entry in the start hash map that corresponds to
the current process ID:

ap = bpf_map_lookup_elem(&start, &pid);

This has the information about the filename and flags that was
written earlier during the sys_enter_open(at) call. The flags field
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9 You could use a general-purpose tool like bpftool, which can read BPF object files and
perform operations on them, but that requires the user to know details about what to
load and what events to attach programs to. For most applications, it makes sense to
write a specific tool that simplifies this for the end user.

is an integer stored directly in the structure, so it’s OK to read it
directly from the structure:

event.flags = ap->flags;

In contrast, the filename is written into some number of bytes in
user space memory, and the verifier needs to be sure that it’s safe
for this eBPF program to read that number of bytes from that
location in memory. This is done using another helper function,
bpf_probe_read_user_str():

bpf_probe_read_user_str(&event.fname, sizeof(event.fname), 
                    ap->fname);

The current command name (that is, the name of the executable
that made the open(at) syscall) is also copied into the event struc‐
ture, using another BPF helper function:

bpf_get_current_comm(&event.comm, sizeof(event.comm));

The event structure gets written into the events perf buffer map:

bpf_perf_event_output(ctx, &events, BPF_F_CURRENT_CPU,
                    &event, sizeof(event));

The user space code reads event information out of this map. Before
we get to that, let’s look briefly at the Makefile.

libbpf-tools Makefile
When you build eBPF code, you get an object file containing the
binary definitions of the eBPF programs and maps. You also need an
additional user space executable that will load those programs and
maps into the kernel, and act as the interface for the user.9 Let’s look
at the Makefile that builds opensnoop to see how it creates both the
eBPF object file and the executable.

Makefiles comprise a set of rules, and the syntax for these can be
a bit opaque, so if you’re not familiar with Makefiles and don’t
particularly care about the details, please do feel free to skip over
this section!
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The opensnoop example that we’re looking at is one of a large set
of example tools that are all built using one Makefile that you’ll
find in the libbpf-tools directory. Not everything in this file is
particularly of interest, but there are a few rules I’d like to highlight.
The first is a rule that takes a bpf.c file and uses the clang compiler
to create a BPF target object file:

$(OUTPUT)/%.bpf.o: %.bpf.c $(LIBBPF_OBJ) $(wildcard %.h) $(AR..
    $(call msg,BPF,$@)
    $(Q)$(CLANG) $(CFLAGS) -target bpf -D__TARGET_ARCH_$(ARCH) \
          -I$(ARCH)/ $(INCLUDES) -c $(filter %.c,$^) -o $@ && \
    $(LLVM_STRIP) -g $@

So, opensnoop.bpf.c gets compiled into $(OUTPUT)/open

snoop.bpf.o. This object file contains the eBPF programs and maps
that will get loaded into the kernel.

Another rule uses bpftool gen skeleton to create a skeleton
header file from the map and program definitions contained in that
bpf.o object file:

$(OUTPUT)/%.skel.h: $(OUTPUT)/%.bpf.o | $(OUTPUT)
   $(call msg,GEN-SKEL,$@)
   $(Q)$(BPFTOOL) gen skeleton $< > $@

The opensnoop.c user space code includes this opensnoop.skel.h
header file to get the definitions of the maps that it shares with the
eBPF programs in the kernel. This allows the user space and kernel
code to know about the layout of the data structures that get stored
in these maps.

The following rule compiles the user space code from opensnoop.c
into a binary object called $(OUTPUT)/opensnoop.o:

$(OUTPUT)/%.o: %.c $(wildcard %.h) $(LIBBPF_OBJ) | $(OUTPUT)
   $(call msg,CC,$@)
   $(Q)$(CC) $(CFLAGS) $(INCLUDES) -c $(filter %.c,$^) -o $@

Finally, there is a rule that uses cc to link the user space application
objects (in our case, opensnoop.o) into a set of executables:

$(APPS): %: $(OUTPUT)/%.o $(LIBBPF_OBJ) $(COMMON_OBJ) | $(OUT...
   $(call msg,BINARY,$@)
   $(Q)$(CC) $(CFLAGS) $^ $(LDFLAGS) -lelf -lz -o $@

Now that you have seen how the eBPF and user space programs are
generated separately, let’s look at the user space code.
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10 See Andrii Nakryiko’s post describing BPF skeleton code generation.

Opensnoop User Space Code
As I mentioned, the user space code that interacts with eBPF code
could be written in pretty much any programming language. The
example that we’ll discuss in this section is written in C, but if you’re
interested, you could compare it with the original BCC version
written in Python, that you’ll find in bcc/tools.

The user space code is in the opensnoop.c file. The first half of the
file has #include directives (one of them being the autogenerated
opensnoop.skel.h file), various definitions, and the code to handle
different command line options, which we won’t dwell on here. Let’s
also gloss over functions like print_event() which writes the infor‐
mation about an event to the screen. From an eBPF perspective, all
the interesting code is in the main() function.

You will see functions like opensnoop_bpf__open(), open

snoop_bpf__load(), and opensnoop_bpf__attach(). These are all
defined in the autogenerated code created by bpftool gen skele
ton.10 This autogenerated code handles all the individual eBPF pro‐
grams, maps, and attachment points defined in the eBPF object file.

Once opensnoop is up and running, its job is to listen on the events
perf buffer and write the information contained in each event to
the screen. First, it opens the file descriptor associated with the perf
buffer and sets handle_event() as the function to be called when a
new event arrives:

pb = perf_buffer__new(bpf_map__fd(obj->maps.events), 
    PERF_BUFFER_PAGES, handle_event, handle_lost_events, 
    NULL, NULL);

Then it polls on buffer events until either a time limit is reached, or
the user interrupts the program:

while (!exiting) {
         err = perf_buffer__poll(pb, PERF_POLL_TIMEOUT_MS);
...
}

The data parameter passed to handle_event() points to the event
structure that the eBPF program wrote into the map for this event.
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The user space code can retrieve this information, format it and
write it out for the user to see.

As you’ve seen, opensnoop registers eBPF programs that are called
every time any application calls the open() or openat() system call.
These eBPF programs running in the kernel collect information
about the context of that system call—the executable name and
process ID—and about the file being opened. This information is
written into a map, from which user space can read it and display it
to the user.

You’ll find dozens more examples of eBPF tools like this in the
libbpf-tools directory, each of which typically instruments one
syscall, or a family of related syscalls like open() and openat().

System calls are a stable kernel interface, and they offer a very
powerful way to observe what’s happening on a (virtual) machine.
But don’t be fooled into thinking that eBPF programming begins
and ends at intercepting system calls. There are plenty of other sta‐
ble interfaces, including LSM and various points in the networking
stack, to which eBPF can be attached. If you’re willing to risk or
work around changes between kernel versions, the range of places
where you can attach eBPF programs is absolutely vast.
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1 You’ll find BCC at this GitHub page.

CHAPTER 4

eBPF Complexity

You’ve now seen an example of eBPF programming to give you a
flavor of how it works. While basic examples can make eBPF seem
relatively straightforward, there are some complexities that make it
challenging.

One area that has historically made it relatively difficult to write and
distribute eBPF programs is kernel compatibility.

Portability Across Kernels
eBPF programs can access kernel data structures, and these may
change across different kernel versions. The structures themselves
are defined in header files that form part of the Linux source code.
Back in the day, you had to compile your eBPF programs against
the correct set of header files compatible with the kernel where you
want to run those programs.

BCC Approach to Portability
To address portability across kernels, the BCC1 (BPF Compiler
Collection) project took the approach of compiling eBPF code
at runtime, in situ on the destination machine. This means the
compilation toolchain needs to be installed onto every destination
machine where you want the code to run,2 and you have to wait for

25

https://oreil.ly/T4DGJ


2 Some projects take the approach of packaging the eBPF source plus the required
toolchain into a container image. This avoids the complexity of installing that toolchain
and any concomitant dependency management, but it still means that the compilation
step runs on the destination machine.

the compilation to complete before the tool starts. You also have to
hope that the kernel headers are present on the filesystem (and that’s
not always the case). Enter BPF CO-RE.

CO-RE
The CO-RE—compile once, run everywhere—approach consists of
a few elements:

BTF (BPF Type Format)
This is a format for expressing the layout of data structures and
function signatures. Modern Linux kernels support BTF, so that
you can generate a header file called vmlinux.h from a running
system, containing all the data structure information about a
kernel that a BPF program might need.

libbpf, the BPF library
On the one hand, libbpf provides functions for loading eBPF
programs and maps into the kernel. But it also plays an impor‐
tant role in portability: it leans on BTF information to adjust
the eBPF code to compensate for any differences between the
data structures present when it was compiled, and what’s on the
destination machine.

Compiler support
The clang compiler was enhanced so that when it compiles
eBPF programs, it includes what are known as BTF relocations,
which are what libbpf uses to know what to adjust as it loads
BPF programs and maps into the kernel.

Optionally, a BPF skeleton
A skeleton can be autogenerated from a compiled BPF object
file using bpftool gen skeleton, containing handy functions
that user space code can call to manage the lifecycle of BPF pro‐
grams—loading them into the kernel, attaching them to events
and so on. These functions are higher-level abstractions that
can be more convenient for the developer than using libbpf
directly.
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3 See Andrii Nakryiko’s IO Visor post for more information.

For a more detailed explanation of CO-RE, read Andrii Nakryiko’s
excellent description.

BTF information in the form of a vmlinux file has been included in
the Linux kernel since version 5.4,3 but raw BTF data that libbpf
can make use of can also be generated for older kernels. There’s
information on how to generate BTF files, and an archive of files for
a variety of Linux distributions, on the BTF Hub.

The BPF CO-RE approach makes it far easier than it used to be
for an eBPF programmer to get their code to run on any Linux
distribution—or at least, on any Linux distribution new enough to
have support for whatever set of eBPF capabilities their program
uses. But this doesn’t make eBPF programming a walk in the park:
it’s still essentially kernel programming.

Linux Kernel Knowledge
It quite quickly becomes clear that you need some domain knowl‐
edge about the Linux kernel in order to write more advanced tools.
You’ll need to understand the data structures you have access to,
which depend on the context in which your eBPF code is called.
Not every application developer has experience in parsing network
packets, accessing socket buffers, or handling the arguments to a
system call.

How will the kernel react to your eBPF code’s behavior? As you
learned in Chapter 2, the kernel consists of millions of lines of code.
Its documentation can be sparse, so you might find yourself having
to read kernel source code to figure out how something works.

You’ll also need to figure out what events your eBPF code should
attach to. With the option to attach a kprobe to any function entry
point in the entire kernel, it might not be an easy decision. In some
cases, it’s straightforward—for example, if you want to access an
incoming network packet, then the XDP hook on the appropriate
network interface is an obvious choice. If you want to provide
observability into a particular kernel event, it may not be terribly
hard to find the appropriate point within the kernel code.
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4 Rex Guo and Junyuan Zeng, “Phantom Attack: Evading System Call Monitoring,” (DEF
CON, August 5–8, 2021).

5 The Cilium documentation describes how eBPF programs attached to different net‐
working hooks are combined to achieve complex networking capabilities.

But in other cases, the choice may be less obvious. As an example,
tools that simply use kprobes to hook into the functions that make
up the kernel’s syscall interface may be subject to a security exploit
known as a time-of-check to time-of-use (TOCTTOU). An attacker
has a small window of opportunity where they can change a syscall’s
arguments after the eBPF code has read them, but before they have
been copied into kernel memory. There was an excellent presenta‐
tion on this at DEF CON 294 by Rex Guo and Junyuan Zeng. Some
of the most widely used eBPF tooling was written in quite a naive
way and is subject to this kind of attack. It’s not an easy exploit,
and there are ways to mitigate these attacks, but if you’re protecting
highly sensitive data against sophisticated, motivated adversaries,
please dig in to understand whether the tools you use might be
affected.

You’ve already seen how BPF CO-RE enables eBPF programs to
work on different kernel versions, but it only takes into account the
changes in data structure layout and not broader changes to kernel
behavior. For example, if you want to attach an eBPF program to
a particular function or tracepoint in the kernel, you may need a
Plan B for what to do if that function or tracepoint doesn’t exist in a
different kernel version.

Coordinating Multiple eBPF Programs
A lot of eBPF-based tools available today offer a suite of observabil‐
ity capabilities, enabled by hooking eBPF programs into a set of
kernel events. Much of this was pioneered by the work that Brendan
Gregg and others did in BCC and bpftrace tools. Today’s genera‐
tion of (often commercial) tools may offer much prettier graphics
and UIs, but the eBPF programs they leverage are based highly on
those originals.

Things get considerably more complicated when you want to write
code that coordinates interactions between different types of events.
As an example, Cilium sees network packets at a variety of points
through the kernel’s networking stack,5 and manipulates traffic
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based on information from the Kubernetes CNI (container network
interface) about Kubernetes pods. Building this system requires
Cilium developers to have an in-depth understanding of how the
kernel handles network traffic, and how the user space concepts of
“pods” and “containers” map to kernel concepts like cgroups and
namespaces. In practice, several Cilium maintainers are also kernel
developers working on enhancements to eBPF and to networking
support; hence, they have this knowledge.

The bottom line is that although eBPF offers an extremely efficient
and powerful platform for hooking into the kernel, it’s nontrivial
for the average developer without significant kernel experience. If
you’re interested in getting your hands dirty with eBPF program‐
ming, I highly encourage it as a learning exercise; building up
experience in this area could be highly valuable since it’s bound
to continue to be a sought-after specialist skill for years to come. But
realistically, most organizations are unlikely to build much bespoke
eBPF tooling in-house, but instead will leverage projects and prod‐
ucts from the specialist eBPF community.

Let’s move on to considering why these eBPF-based projects and
products are particularly powerful in a cloud native environment.
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1 This is nearly always true, unless you are using a virtualization approach like Kata
containers, Firecracker or unikernels, where each “container” runs in its own virtual
machine.

CHAPTER 5

eBPF in Cloud Native
Environments

The cloud native approach to computing has taken off exponen‐
tially in recent years. In this chapter, I’ll discuss why eBPF is so
well-suited to tooling for cloud native environments. To keep things
concrete, I’ll refer to Kubernetes, but the same concepts apply to any
platform that uses containers.

One Kernel per Host
To understand why eBPF is so powerful in the cloud native world,
you’ll need to be very clear on one concept: there is only one kernel
per machine (or virtual machine), and all the containers running on
that machine share the same kernel,1 as shown in Figure 5-1. The
same kernel is involved with and aware of all the application code
running on any given host machine.

By instrumenting the kernel, as we do when using eBPF, we can
simultaneously instrument all the application code running on that
machine. When we load an eBPF program into the kernel and
attach it to an event, it gets triggered irrespective of which process is
involved with the event.
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Figure 5-1. All the containers on the same host share a single kernel

eBPF Versus the Sidecar Model
Prior to eBPF, most observability and security tooling for Kuber‐
netes used the sidecar model. This model allows you to deploy the
instrumentation in a separate container but within the same pod
as the application. When this approach was invented, it was a step
forward because it meant you no longer had to write instrumenta‐
tion code directly in the app. Simply by deploying the sidecar, it
would have visibility over the other containers in the same pod. The
process of injecting sidecars is usually automated, so this provides a
mechanism for ensuring all your apps are instrumented.

Each sidecar container consumes resources, and this is multiplied
by the number of pods with the sidecar injected. This can be very
significant—for example, if each sidecar needs its own copy of rout‐
ing information, or policy rules, this is wasteful. (For more on this,
Thomas Graf wrote a comparison of sidecars with eBPF for service
mesh.)

Another issue with sidecars is that you can’t guarantee that every
application on the machine has been instrumented correctly. Imag‐
ine that an attacker manages to compromise one of your hosts and
starts a separate pod to run, say, a cryptocurrency miner. They
are unlikely to do you the courtesy of instrumenting their mining
pod with your sidecar observability or security tools. You’ll need a
separate system to be aware of this activity.

But that same cryptocurrency miner shares the kernel with the
legitimate pods running on that host. If you’re using eBPF-based
instrumentation, as illustrated in Figure 5-2, the miner is automati‐
cally subject to it.
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Figure 5-2. Sidecars can only observe activity in their own pods, but
eBPF programs can observe all activity

eBPF and Process Isolation
Instead of per-pod sidecars, I’m advocating the consolidation of
functionality into a single per-node, eBPF-based agent. If that agent
has access to all the pods running on the machine, isn’t that a
security risk? Haven’t we lost the isolation between applications that
might prevent them from interfering with each other?

As someone who has spent a lot of time working in container
security, I can relate to these concerns, but it’s important to dig into
the underlying mechanisms to really understand why it’s not the
flaw that it might appear to be at first.

The important thing to remember is that those pods all share one
kernel, and the kernel does not have an innate understanding of
pods or containers. Instead, the kernel operates on processes, and
uses cgroups and namespaces to isolate processes from each other.
Those structures stop processes in user space from being able to see
or interfere with each other, as policed by the kernel. As soon as data
is being processed within the kernel (for example, being read from
disk or sent to a network) you are relying on the kernel behaving
correctly. It is only the kernel’s own code that says, for example,
that it should respect, say, file permissions. There’s no extra magic
authoritative layer that would stop the kernel from ignoring file
permissions and reading data out of any file it wanted to access—it’s
simply that the kernel itself is coded not to do so.
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2 The Linux capability CAP_BPF grants permission to load BPF programs.

The security controls that exist on a Linux system assume that the
kernel itself can be trusted. They are there to protect against bad
behavior from code running in user space.

We saw in Chapter 2 that the eBPF verifier ensures that any eBPF
program only attempts to access memory that it should have access
to. The verifier checks that the program can’t possibly go beyond its
remit, including ensuring that the memory is owned by the current
process or is part of the current network packet. This means that
eBPF code is subject to much stricter controls than the surrounding
kernel code, which doesn’t have to pass any kind of verifier step.

If an attacker escapes a containerized application onto the node,
and is able to escalate privileges, that attacker can compromise
other applications on the same node. Since those escapes are
not unknown, as a container security expert, I would not recom‐
mend running sensitive applications on a shared machine alongside
untrusted applications or users without some level of additional
security tooling. For highly sensitive data, you might not even want
to run within a virtual machine on the same bare metal as untrusted
users. But if you are prepared to run applications side-by-side on
the same virtual machine (which is completely reasonable in many
applications that are not particularly sensitive), then eBPF is not
adding risk beyond what already exists by sharing a kernel.

Of course, a malicious eBPF program could wreak all kinds of
havoc, and it would certainly be easy to write eBPF code that
behaves badly—for example, taking copies of every network packet
and sending it to an eavesdropper. By default, nonroot users don’t
have permission to load eBPF programs,2 and you should only grant
users or software systems this permission if you really trust them,
much as for root permissions. So, you do have to be careful about
the provenance of the code you run (and there is an initiative in play
to support signature checking of eBPF programs to help with this).
You can also use eBPF programs to keep a watchful eye on other
eBPF programs!

Now that you have an overview of why eBPF is a powerful basis
for cloud native instrumentation, the next chapter gives you some
concrete examples of eBPF tooling from the cloud native ecosystem.
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CHAPTER 6

eBPF Tools

Now that you’ve learned about what eBPF is, and something of how
eBPF programs work, let’s turn to exploring some of the tools, built
on this technology, that you might make use of in a production
deployment today. We’ll consider some examples of eBPF-based
open source projects that provide capabilities in three important
areas: networking, observability, and security.

Networking
eBPF programs can be attached to network interfaces and to various
points in the kernel’s network stack. At each point, they can drop
packets, send them to different destinations, or even modify the
contents. This enables some very powerful capabilities. Let’s look
at a few networking features that are now commonly implemented
with eBPF.

Load Balancing
If you have any doubts about the scalability of eBPF for networking,
know that it is being used at massive scale at Facebook. They were
an early adopter of BPF and introduced Katran in 2018, an open
source, layer 4 load balancer.

Another example of a highly scaled load balancer comes from
Cloudflare’s Unimog edge load balancer. By running within the ker‐
nel, eBPF programs can manipulate network packets and forward
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them to an appropriate destination, without each packet having to
pass through the networking stack and on to user space.

The Cilium project is better known as an eBPF Kubernetes network‐
ing plug-in (as I’ll discuss in a moment) but it’s also in use in large
telecommunication and on-premises deployments as a standalone
load balancer. Again, the ability to process packets at an early stage
without them having to transition into user space makes this highly
performant.

Kubernetes Networking
CNCF project Cilium was the original eBPF-based CNI implemen‐
tation. It was originally started by a group of kernel maintainers
working on eBPF who recognized the potential for its use in cloud
native networking. It’s now used as the default data plane for Google
Kubernetes Engine, Amazon EKS Anywhere, and Alibaba Cloud.

In a cloud native world, pods stop and start all the time, and each
pod gets assigned an IP address. Prior to eBPF-enabled networking,
each node had to keep updating a set of iptables rules for each
of these changes in order to route between pods; and managing
these iptables rules gets unwieldy at scale. As illustrated in Fig‐
ure 6-1, Cilium dramatically simplifies routing so that it’s essentially
a simple lookup table in eBPF, leading to measurable performance
improvements.

Another Kubernetes CNI that added an eBPF implementation,
alongside their traditional iptables version, is Project Calico.
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Figure 6-1. Bypassing the host networking stack with eBPF
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Service Mesh
eBPF also makes real sense as the basis for a more efficient data
plane for service mesh. Many service mesh features operate at layer
7, the application layer, and use a proxy component such as Envoy
to act on behalf of an application. In Kubernetes, these proxies are
often deployed in a sidecar model, with one proxy container per
pod, so that the proxy has access to the pod’s network namespace.
As you saw in Chapter 5, eBPF allows a more efficient approach
than the sidecar model. Since the kernel has access to all the pod
namespaces, we can use eBPF to make connections between applica‐
tions in pods and a single proxy on the host, as shown in Figure 6-2.

Figure 6-2. eBPF enables an efficient sidecarless model for service
mesh, with one proxy per node rather than one per application pod
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I have another article about using eBPF for more efficient service
mesh data planes, as have Solo.io. At the time of writing, the Cilium
Service Mesh is available in beta and showing early performance
gains over the traditional sidecar proxy approach.

Observability
As you’ve seen earlier in this report, eBPF programs can get visibil‐
ity into everything that’s happening on a machine. By collecting data
about events and passing them to user space, eBPF enables a range
of powerful observability tools that can show you how your appli‐
cations are performing and behaving, without having to make any
changes to instrument those apps. eBPF also enables observability
over the entire system, not just individual applications, so you can
understand the behavior of your host machines.

You’ve come across the BCC project earlier in this report, and over
several years Brendan Gregg has done pioneering work at Netflix to
show how these eBPF tools can be used to observe practically any
metrics you’re interested in, at scale and with high performance.

Kinvolk’s Inspektor Gadget takes some of these tools with their
origins in BCC into the world of Kubernetes, so that you can easily
observe specific workloads on the command line.

A new generation of projects and tools is building on this work to
provide GUI-based observability. CNCF project Pixie lets you run
prewritten or custom scripts and see metrics and logs through a
powerful and visually appealing UI. Because it’s based on eBPF, this
means you can automatically instrument all your applications and
get performance data without making any code changes or configu‐
ration. Figure 6-3 shows just one example of the many visualizations
available in Pixie.

Another observability project called Parca focuses on continuous
profiling, using eBPF to efficiently sample metrics like CPU usage
that you can use to detect performance bottlenecks.
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Figure 6-3. A Pixie flamegraph of everything running on a small
Kubernetes cluster

The Hubble component of Cilium is an observability tool with both
a command line interface and UI (shown in Figure 6-4) that focuses
on network flows in your Kubernetes clusters.

Figure 6-4. Cilium’s Hubble UI shows network flows in a Kubernetes
cluster

In a cloud native environment, where IP addresses are continually
being dynamically assigned and reassigned, traditional network
observability tools based on IP addresses are of very limited use.
As a CNI, Cilium has access to workload identity information which
means that Hubble can show service maps and flow data identified
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1 XDP or eXpress Data Path hooks are supported by some network interface cards and
drivers, allowing the eBPF program to be offloaded out of the kernel entirely.

by Kubernetes pods, services, and namespaces. This is invaluable for
diagnosing network issues.

If you can observe activity, this is a basis for security tools that com‐
pare what’s happening with policies or rules to understand whether
that activity is expected or suspicious. Let’s turn to some tools that
use eBPF to provide cloud native security capabilities.

Security
There are powerful cloud native tools available that enhance secu‐
rity by using eBPF to detect and even prevent malicious activity.
I’ve considered these in two groups: securing network activity and
securing the expected behavior of applications at runtime.

Network Security
Because eBPF allows inspecting and manipulating network packets,
it has many uses in network security. The basic principle is that if
a network packet is deemed to be malicious or problematic because
it does not meet some security validation criteria, it can simply be
dropped. eBPF is a highly efficient way to implement this because it
can hook into the relevant parts of the network stack in the kernel,
or even on the network interface card.1 This means out-of-policy or
malicious packets can be dropped before incurring the processing
costs of being handled by the networking stack and passed to user
space.

One of the early uses of eBPF in production at scale was for DDoS
(distributed denial of service) protection at Cloudflare. A DDoS
attacker floods a target machine with many network messages, in
the hope that the target can’t process them quickly enough and
becomes so busy handling these messages that it can’t do useful
work. Cloudflare engineers use eBPF programs to examine packets
as soon as they arrive, and quickly determine whether a packet is
part of such an attack, discarding them if so. The packet doesn’t have
to pass through the kernel’s networking stack so it takes far fewer
resources to process, and the target can cope with a much higher
rate of malicious traffic.
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2 Daniel Borkmann discussed this in his talk, “BPF as a Fundamentally Better Dataplane”
(eBPF Summit (virtual), 2020).

3 See Cilium’s Host Firewall documentation.
4 Tailscale has a comparison of these two encryption protocols.

eBPF programs have also been used as a dynamic mitigation against
“packet of death” kernel vulnerabilities.2 An attacker crafts a net‐
work packet in such a way that it exploits a bug in the kernel
that prevents it from processing that packet properly. Rather than
waiting for a kernel patch to roll out, the attack can be mitigated
by loading an eBPF program that looks for these specifically crafted
packets and drops them. The real beauty of this is that the eBPF pro‐
gram can be loaded dynamically without having to change anything
on the machine.

In Kubernetes, network policy is a first-class resource, but it’s left
to the networking plug-in to enforce it. Some CNIs, including
Cilium and Calico, offer extended network policy capabilities for
more powerful rules, such as allowing or disallowing traffic to a
destination specified by fully qualified domain name rather than just
by IP address. There’s a good tool for exploring network policies and
their effects at app.networkpolicy.io, shown in Figure 6-5.

Standard Kubernetes network policy rules apply to traffic to and
from application pods, but since eBPF has visibility over all network
traffic, it can be used for host firewall capabilities too, restricting
traffic to and from a host (virtual) machine.3

eBPF can also be leveraged to provide transparent encryption,
whether through WireGuard or IPsec.4 Here, transparent means that
the application doesn’t need any modifications—in fact the applica‐
tion can be entirely unaware that its network traffic is encrypted.
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Figure 6-5. The network policy editor shows a visual representation of
the effects of a policy

Runtime Security
eBPF is also being used to build tools that detect when applications
behave in unexpected or malicious ways, and some of these tools
can also be used to prevent bad behavior. A few examples of suspi‐
cious behavior might include accessing files unexpectedly, running
executable programs, or attempting to gain additional privileges.

In fact, you may well have used BPF-based security enforcement in
the form of seccomp, a Linux feature for limiting the set of syscalls
that any application can call.
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5 See Bharat Jogi’s blog, “PwnKit: Local Privilege Escalation Vulnerability” (Qualys, Janu‐
ary 25, 2022).

6 See Daniel Borkmann’s talk, “BPF and Spectre: Mitigating Transient Execution Attacks”
(eBPF Summit (virtual), August 18–19, 2021).

The CNCF project Falco extended this idea of limiting the syscalls
that an application can make. Falco’s rule definitions are created
in YAML, which is easier for humans to read and interpret than
seccomp profiles. The default Falco driver is a kernel module, but
there is also an eBPF probe driver that attaches to “raw syscall”
events. It doesn’t prevent those syscalls being completed, but it can
generate logs or other notifications to alert operators to a potentially
malicious event.

As we saw in Chapter 3, eBPF programs can be attached to the
LSM interface to prevent malicious behaviors or to mitigate known
vulnerabilities. For example, Denis Efremov wrote an eBPF program
to prevent exec*() system calls being run if they are not passed
any arguments, in order to mitigate the PwnKit5 high-severity vul‐
nerability. eBPF can also be used to mitigate against speculative
execution “Spectre” attacks.6

Tracee is another open source project for runtime security using
eBPF. As well as syscall-based checks, it also uses the LSM interface.
This helps avoid being vulnerable to TOCTTOU race conditions
that are possible when only checking syscalls. Tracee supports rules
defined in Open Policy Agent’s Rego language, and also allows for
plug-in rules defined in Go.

The Tetragon component of Cilium offers another powerful
approach, using eBPF to monitor the four golden signals of container
security observability: process execution, network sockets, file access,
and layer 7 network identity. This allows operators to see exactly
what was responsible for any malicious or suspicious event, down
to the executable name and user identity within a specific pod. For
example, if you were subject to a cryptocurrency mining attack,
you could see exactly what executable opened a network connection
to a mining pool, from what pod, and when. These forensics are
invaluable for understanding how the compromise happened and
making it easy to build security policies to prevent similar attacks in
future.

44 | Chapter 6: eBPF Tools

https://oreil.ly/iFXAi
https://oreil.ly/ijt76
https://falco.org
https://oreil.ly/vbWBw
https://oreil.ly/UT1ES
https://oreil.ly/vv4tJ
https://oreil.ly/CxClm


7 Natália Ivánkó and Jed Salazar, Security Observability with eBPF (O’Reilly, 2022).

If you’d like to dive deeper into the topic of security observability
with eBPF, check out the report7 by Natália Ivánkó and Jed Salazar.
Keep an eye on the cloud native eBPF space, as it won’t be long
before we see tools that leverage BPF LSM and other eBPF customi‐
zation to provide security enforcement as well as observability.

We’ve taken a tour around several cloud native tools in networking,
observability, and security. Their use of eBPF gives them two key
advantages over previous generations:

1. From their vantage point in the kernel, eBPF programs have1.
visibility across all processes.

2. By avoiding transitions between kernel and user space execu‐2.
tion, eBPF programs provide an extremely performant way to
collect event data or handle network packets.

This doesn’t mean we should use eBPF for everything! It’s unlikely
to make sense to write business-specific applications in eBPF, any
more than we would typically write applications as kernel modules.
There may be some exceptions to this rule, perhaps for extremely
high performance requirements like high-frequency trading. In the
main, eBPF comes into its own for tooling that instruments other
applications, as we’ve seen in this chapter.
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CHAPTER 7

Conclusion

I hope this short report has given you an understanding of eBPF and
why it’s so powerful. What I really hope is that you’re ready to try
out some eBPF-based tools for yourself!

If you want to dive deeper on the technical side, a good place
to start is ebpf.io, where you’ll find more information about the
technology and the eBPF Foundation. For coding examples, I have
some resources in my ebpf-beginners repository on GitHub.

To learn about how others are leveraging eBPF tools, join events like
eBPF Summit and Cloud Native eBPF Day where users share their
successes and learnings. There is an active Slack channel that you
can reach from ebpf.io/slack. I hope to see you there!
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